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LElTER TO THE EDITOR 

Static and dynamic scaling for chainnhain aggregation 
in two dimensions 

Jean-Marc Debierre and Loic Turban 
Laboratoire de physique du solidet. Universiti de Nancy I ,  BP 239, 
F-54506 Vandoeuvre-lis-Nancy, France 

Received 6 October 1986 

Abstract. Chain-chain aggregation is studied on the square lattice by Monte Carlo simula- 
tions. The fractal dimension of the aggregates is found to be D = 1.32*0.04. The results 
support the dynamic scaling relation n,( t )  - s-’f(s/ t ’ )  with z = 0.72 i 0.02. 

A rich variety of physical phenomena such as aggregation, coagulation or polymerisa- 
tion lead to the formation of branched random clusters (Friedlander 1977). A non- 
equilibrium growth model based on aggregation of clusters, proposed to describe the 
formation of such aggregates (Meakin 1983, Kolb et a1 1983), displays interesting 
dynamic features in 2~ (Vicsek and Family 1984, Kolb 1984, Botet and Jullien 1984, 
Meakin et al 1985, Jullien 1986 and references therein): the cluster size distribution 
function n , ( t )  varies with s (cluster size) and t (time), according to 

n, ( t ) - s -*f( s/ t ’ ) (1) 

where the scaling function f ( x )  - x’ when x << 1 and f(x) << 1 when x >> 1 .  
Besides these branched clusters, natural phenomena may also lead to the formation 

of unramified aggregates (chains). A model of linear diff usion-limited aggregation has 
recently been proposed (Debierre and Turban 1986, Bradley and Kung 1986) as a first 
attempt to simulate these phenomena. In this letter we introduce a new dynamic 
aggregation process in which longer chains are grown by chain-chain aggregation. 

At t = 0, No monomers are randomly distributed on a L x L square lattice with 
periodic boundary conditions. They are then allowed to perform random walks on 
the lattice. When two monomers meet (i.e. arrive at first-neighbour positions) they 
stick to form a dimer. The process is continued and the chains may stick at both ends 
to form longer chains. The chains move rigidly as in the cluster-cluster aggregation 
model. As a consequence, inactive configurations may appear. In particular, closed 
loops which necessarily contain an even number of monomers remain inactive. 

At each Monte Carlo step a chain (active or inactive) is chosen at random, 
independent of its size s, a one lattice unit move is attempted in a randomly chosen 
direction and the time is increased by an amount A t  = s/  No (Vicsek and Family 1984). 
To simulate the steric effects, we use reflecting boundary conditions (i.e. no part of 
the diffusing chain may visit an already occupied site). We have performed 100 
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simulations on a 256x256 lattice for the density p1 = N o / L 2 =  1132-0.03 and 50 
simulations on a 400 x 400 lattice for two values of the density, p1 and p2 = p1/2. The 
time development of the chain-chain aggregation is illustrated in figure 1. 

The first quantity of interest is the mean radius of gyration R, o f  a s-site chain 
which is related to its fractal dimension D by 

R, - s 1 l D .  (2) 
Using equation ( l ) ,  it is easy to show that, at a given time t, we have in the same way 
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Figure 1. Three typical stages of a simulation on a 
128 x 128 square lattice with 256 particles: ( a )  t = 40, 
( b )  1 = 2 0 0 a n d ( c )  1=1000. 
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is the mean R, value for all the chains present at time t and 

is the mean cluster size. The three D values obtained from the log-log plot of R 
against S (figure 2) for L = 256 and L = 400 with a density p1 and L = 400 with p2 are 
very close, suggesting no appreciable size or density effects. They lead to the following 
estimate: 

(6) D = 1.32 f 0.04 

near to the SAW value D = $. 
We have also calculated the chain size distribution function given by 

n s ( t )  = Ns(t)/L2 (7) 
where Ns( t )  is the number of chains of size s at time t and the mean cluster size S (  t) .  

(8) 
At the higher density p l ,  this curve saturates. For long times, large chains appear 
which prevent each other to move, freezing the time evolution. 

According to equation (l), in the limit x<< 1 

For large t values, S (  t )  - tZ,  and a fit of In S (  t )  against In t gives (figure 3) 
z = 0.72 f 0.02. 

n,( t )  - s-' r = 2 - 6  (9) 
n,( t )  - t - W  (10) w = 62 = (2 - 7 ) z .  

The curves In Ns( t )  against In t for different s values are displayed in figure 4. From 
the slope one gets 

w=1.5*O0.2 

3 

-3 

Figure 2. In 
gives 1/ D = 0.76 * 0.02. 

plotted against In S for L = 400 and pz = &. The slope of the straight line 
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Figure 3. In S plotted against In I for L = 400: ( a )  p2 = ,& and ( b )  p ,  = A. The slope gives 
the exponent z = 0.72 i 0.02. Notice the saturation effect for long times at the larger density. 

I 

Figure 4. In N , (  1 )  plotted against In I ( L  = 400, p2  = A) for ( +  ) s = 1, (U) s = 5 and (0) 
s = 15. From the slope one gets w = 1.5 * 0.2. Notice that the curves coalesce for long times. 

The curves In N , ( t )  against In s are shown in figure 5 at different times. Even s values 
have been discarded since they contain the contribution of inactive closed loops. The 
envelope of the curves is a straight line with a slope close to 2 ,  in agreement with (1) 
(Meakin et a1 1985). This value results from the time independence of the density 
p = Z, s n,. The slope of the linear part at large time gives 

7 = 0. (12) 

The dynamics of cluster-cluster aggregation has been studied with a size-dependent 
These results support the Vicsek-Family scaling law (10). 

cluster diffusion coefficient: 

D, - s Y .  (13)  
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Figures. In N , ( I )  plotted against In s ( L  =400, p z  = &  for different values of the time 
ranging from f = 1 to f = 7500. The slope of the envelope is near to -2 as indicated by the 
broken line. For large values of t the curves have a wide horizontal part and 7'0. 

When y >> 0 the large clusters move faster, leaving a lot of small clusters unaffected 
and then N, ( t )  is a monotonic decreasing function of s. On the other hand, when 
y << 0 the small clusters diffuse rapidly and join together to build larger clusters; then 
one gets a bell-shaped size distribution. At a critical value yc the transition between 
the two regimes is characterised by a plateau in the size distribution leading to T = 0. 
This transition is observed for yc  = -4 in ZD and yc = -+ in 3~ (Meakin et a1 1985). In 
our simulations where the diffusivity is size independent we get T = O  so that yc=O 
for the chain-chain aggregation in ZD. 

Assuming the scaling relation 

K(As , ,  As,) = A2"K(s, ,  s,) (14) 
for the kernel in the Smoluchowski equation (Smoluchowski 1917) the exponent z 
may be related to w through (Botet and Jullien 1984) 

z = (1 - 2 w ) - I .  (15) 

Our value z = 0.72 corresponds to w = -0.2 so that we are in the flocculation regime 

When the aggregation is diffusion-limited a scaling argument (Kolb 1984, Botet 

(16) 

( w  <;,. 

and Jullien 1984) leads to 

z = [ l -  7 - ( d  - 2 ) / D ] - l .  

This relation gives z = 1 in Z D  when y = 0, to be compared to z = 0.72 in our simulations. 
It follows that chain-chain aggregation is not simply diffusion-limited. A systematic 
study of the influence of the diffusivity is required to clarify the aggregation process. 
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